
Diagnostica energetica Metodi numerici avanzati

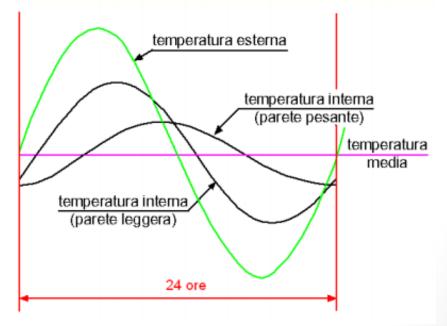
Programma

- Metodo di calcolo dell'efficienza energetica del sistema edificio impianto in regime stazionario (UNI/TS 11300)
- Classificazione energetica secondo la legislazione attualmente in vigore.
- Metodo di calcolo dell'efficienza energetica del sistema edificio impianto in regime dinamico (metodo Energy Plus)

Metodo di calcolo dell'efficienza energetica del sistema edificio impianto in regime dinamico

- Il flusso di energia termica ed il campo termico all'interno degli edifici sono continuamente soggetti a fluttuazioni a causa delle variazioni periodiche delle condizioni climatiche esterne e delle condizioni di utilizzo.
- L'involucro edilizio è **l'elemento di separazione tra l'ambiente interno e quello esterno**. Il suo compito è far sì che, nonostante la variabilità che caratterizza l'ambiente esterno, le condizioni all'interno siano stabilmente confortevoli.

Il regime termico è dinamico:

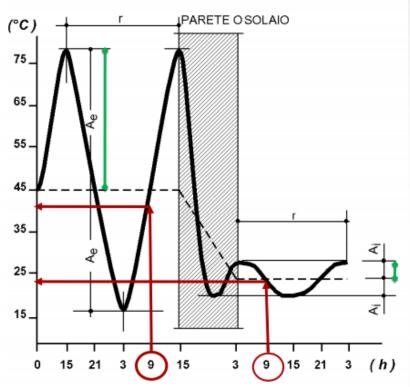

- le caratteristiche termofisiche dipendono dal tempo
- le temperature interna ed esterna dipendono dal tempo

Durante l'arco della giornata le variazioni tra la temperatura esterna e quella interna variano secondo determinate leggi che normalmente si possono approssimare a **sinusoidi**.

La parete subisce l'effetto combinato delle due caratteristiche:

- accumulo termico o capacità termica
- Resistenza termica

Inerzia termica



L'inerzia termica della parete si manifesta con:

- SMORZAMENTO DELL'ONDA TERMICA :
 Rapporto fra la massima temperatura sulla superficie esterna (θE) e quella sulla superficie interna (θI)
- SFASAMENTO T: Tempo, misurato in ore che intercorre fra la massima temperatura all'esterno e la massima temperatura all'interno.

Fattore di attenuazione (fa):

Rapporto tra la trasmittanza termica periodica e la trasmittanza termica stazionaria (<1)

Andamento delle temperature in funzione del tempo in regime termico variabile.

Trasmittanza termica periodica (YIE):

Rapporto tra l'ampiezza della parte oscillante del flusso termico trasmesso attraverso il componente opaco e l'ampiezza della forzante termica esterna, assumendo costante la temperatura interna

Dott. ssa Ing. Elisabetta Negro

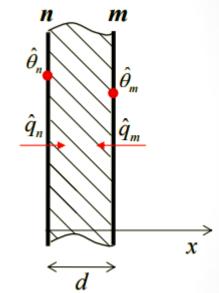
La **distribuzione della temperatura** all'interno di uno strato di materiale omogeneo soggetto ad flusso termico monodimensionale è data dalla soluzione dell'equazione della conduzione che possiamo scrivere nella forma:

$$\frac{\partial^2 \theta}{\partial x^2} = \frac{\rho c}{\lambda} \frac{\partial \theta}{\partial t}$$

- θ Temperatura
- x Direzione di propagazione del flusso termico
- t Tempo

$$\frac{\hat{\varphi}_0}{\mathcal{G}(x,t) = \mathcal{G}_m + \mathcal{G}_0 e^{-\sqrt{\frac{\pi\rho c}{\lambda T}}x} \sin\left(\frac{2\pi}{T}t - \sqrt{\frac{\pi\rho c}{\lambda T}}x\right)} \qquad \hat{\varphi}_1$$

- A causa della conducibilità termica dei materiali, un'oscillazione della temperatura alla loro superficie si propaga al loro interno. Tuttavia, a causa delle capacità a stoccare calore nei suoi strati, l'ampiezza delle oscillazioni diminuisce in maniera esponenziale al penetrare nel materiale.
- La **profondità di penetrazione** δ è definita come la distanza alla quale l'ampiezza si è ridotta di un fattore e (numero di Nepero) in un materiale omogeneo di spessore infinito soggetto a variazioni sinusoidali di temperatura sulla sua superficie, cioè si ha:


$$\delta = \sqrt{\frac{\lambda T}{\rho \pi c}}$$

ρ è la densità del mezzoc è il calore specifico del mezzo.

La penetrazione delle escursioni termiche in un materiale (oscillazioni) dipende quindi dal periodo T delle stesse. Oscillazioni veloci (che si svolgono su brevi tempi) penetrano di meno di quelle lente.

Si definisce **matrice di trasferimento termico** una matrice che mette in relazione le ampiezze complesse della temperatura e del flusso termico su un lato di uno strato con le ampiezze complesse della temperatura e del flusso termico sull'altro lato, cioè

$$\begin{pmatrix} \hat{\theta}_2 \\ \hat{q}_2 \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} \hat{\theta}_1 \\ \hat{q}_1 \end{pmatrix}$$

$$\xi = \frac{d}{\delta}$$

$$Z_{11} = Z_{22} = \cosh(\xi)\cos(\xi) + j\sinh(\xi)\sin(\xi)$$

$$Z_{12} = -\frac{d \cdot}{\lambda \cdot 2} \left\{ \sinh(\xi) \cos(\xi) + \cosh(\xi) \sin(\xi) + j \left[\cosh(\xi) \sin(\xi) - \sinh(\xi) \cos(\xi) \right] \right\}$$

$$Z_{21} = -\frac{\lambda}{d} \left\{ \sinh(\xi) \cos(\xi) - \cosh(\xi) \sin(\xi) + j \left[\sinh(\xi) \cos(\xi) + \cosh(\xi) \sin(\xi) \right] \right\}$$

TRANSITORIO TERMICO EQUAZIONI GLOBALI AMBIENTE

Per ciascun ambiente si hanno, quindi **sette equazioni differenziali** (sei per le pareti ed una per l'aria interna) che formano un sistema di equazioni differenziali che, sotto ipotesi certamente non molto limitative, possiamo ritenere a coefficienti costanti, lineari, del primo ordine, non omogeneo.

$$\begin{split} & \frac{\partial}{m_1 c_1} \frac{\partial T_1}{\partial T} = g_{1,1} h_{e1} S_1 \left(T_e + a_{e1} \frac{c_1 I_1}{h_{e1}} - T_1 \right) + \frac{a_1 S_1}{\sum_{i=1}^{n} a_i S_i} \sum g_{1,1} I_1 f_1 S_{v1} - g_{2,1} K_1 S_1 \left(T_1 - T_i \right) - \frac{h_{i1} K_1 S_1}{h_{i1} + K_1} \left(T_1 - T_a \right) \\ & m_2 c_2 \frac{\partial T_2}{\partial \tau} = g_{1,2} h_{e2} S_{2i} \left(T_e + a_{e2} \frac{c_{2i} I_{2i}}{h_{e2}} - T_2 \right) + \frac{a_2 S_2}{\sum_{i=1}^{n} a_i S_i} \sum g_{1,2} I_2 f_2 S_{v2} - g_{2,2} K_2 S_2 \left(T_2 - T_i \right) - \frac{h_{i2} K_2 S_2}{h_{i2} + K_2} \left(T_2 - T_a \right) \\ & m_3 c_3 \frac{\partial T_3}{\partial \tau} = g_{1,3} h_{e3} S_3 \left(T_e + a_{e3} \frac{c_3 I_3}{h_{e3}} - T_3 \right) + \frac{a_3 S_3}{\sum_{i=1}^{n} a_i S_i} \sum g_{1,3} I_3 f_3 S_{v3} - g_{2,3} K_3 S_3 \left(T_3 - T_i \right) - \frac{h_{i3} K_3 S_3}{h_{i3} + K_3} \left(T_3 - T_a \right) \\ & m_4 c_4 \frac{\partial T_4}{\partial \tau} = g_{1,4} h_{e4} S_4 \left(T_e + a_{e4} \frac{c_4 I_4}{h_{e4}} - T_4 \right) + \frac{a_4 S_4}{\sum_{i=1}^{n} a_i S_i} \sum g_{1,4} I_4 f_4 S_{v4} - g_{2,4} K_4 S_4 \left(T_4 - T_i \right) - \frac{h_{i5} K_4 S_4}{h_{i4} + K_4} \left(T_4 - T_a \right) \\ & m_5 c_5 \frac{\partial T_5}{\partial \tau} = g_{1,5} h_{e5} S_5 \left(T_e + a_{e5} \frac{c_3 I_5}{h_{e5}} - T_5 \right) + \frac{a_5 S_5}{\sum_{i=1}^{n} a_i S_i} \sum g_{1,5} I_5 f_5 S_{v5} - g_{2,5} K_5 S_5 \left(T_5 - T_i \right) - \frac{h_{i5} K_5 S_5}{h_{i5} + K_5} \left(T_5 - T_a \right) \\ & m_6 c_6 \frac{\partial T_6}{\partial \tau} = g_{1,6} h_{e6} S_6 \left(T_e + a_{e6} \frac{c_6 I_6}{h_{e6}} - T_6 \right) + \frac{a_6 S_6}{\sum_{i=1}^{n} a_i S_i} \sum g_{1,5} I_5 f_5 S_{v5} - g_{2,5} K_5 S_6 \left(T_6 - T_i \right) - \frac{h_{i6} K_6 S_6}{h_{i5} + K_5} \left(T_6 - T_a \right) \\ & m_a c_a \frac{\partial T_a}{\partial \tau} = \frac{b_1 M_{e1} S_i}{h_a + K_i} \left(K_i T_i - K_i T_a \right) + n V \rho_a c_a \left(T_e - T_a \right) + S^* + Q_{aicc} + \sum g_{1,i} K_{vi} \left(T_a - T_e \right) \\ & m_a c_a \frac{\partial T_a}{\partial \tau} = \frac{b_1 M_{e1} S_i}{h_a + K_i} \left(K_i T_i - K_i T_a \right) + n V \rho_a c_a \left(T_e - T_a \right) + S^* + Q_{aicc} + \sum g_{1,i} K_{vi} \left(T_a - T_e \right) \\ & m_5 c_5 \frac{\partial T_5}{\partial \tau} \left(T_5 - T_5 \right) + \frac{a_5 S_5}{h_{e5}} \sum \left(T_6 - T_a \right) + S^* + Q_{aicc} + \sum g_{1,i} K_{vi} \left(T_a - T_e \right) \\ & m_5 c_5 \frac{\partial T_5}{\partial \tau} \left(T_5 - T_5 \right) + \frac{a_5 S_5}{h_{e5}} \sum \left(T_6 - T_a \right) + S^* + Q_{aicc} + \sum g_{1,i} K_{vi} \left(T_a - T_e \right) \\ & m_5 c_5 \frac{\partial T_5}{\partial \tau} \left(T_5$$

L'evoluzione termica degli edifici è caratterizzata dal comportamento delle pareti esterne in condizioni di transitorio termico.

Lo **studio in regime dinamico** delle pareti, ovvero la caratterizzazione del comportamento delle pareti in condizioni di condizioni al contorno variabile (T_{esterna}, radiazione solare incidente, ecc...), **è complesso** ma può essere semplificato nel caso di condizioni al contorno variabili secondo un'armonica semplice di periodo temporale constate come, ad esempio, una sinusoide.

Ai fini dello studio del transitorio termico e per la valutazione delle caratteristiche termiche dinamiche si utilizzano i metodi indicati dalle norme:

- UNI-EN 832 "Calcolo del fabbisogno di energia per il riscaldamento"
- UNI-EN 13786 "Caratteristiche termiche dinamiche—Metodi di calcolo".

UNI EN ISO 13786: metodo di calcolo

La procedura è la seguente:

- Identificare i materiali costituenti gli strati del componente edilizio e lo spessore di questi strati e determinare le caratteristiche termiche dei materiali;
- 2. Specificare il periodo delle variazioni in corrispondenza delle superfici;
- 3. Calcolare la profondità di penetrazione per il materiale di ogni strato;
- 4. determinare gli elementi della matrice di trasferimento per ciascuno strato;
- 5. moltiplicare le matrici di trasferimento di ogni strato, escludendo quelle degli strati periferici, nell'ordine corretto per ottenere la matrice di trasferimento del componente.

UNI EN ISO 13786: metodo di calcolo

Dati richiesti

I dati richiesti per calcolare le caratteristiche termiche dinamiche sono:

- a) i disegni dettagliati del prodotto, con le dimensioni;
- b) per ogni materiale utilizzato nel prodotto:
 - 1) la conduttività termica, λ;
 - 2) la capacità termica specifica, c;
 - 3) la densità, ρ.

Questi valori devono essere i valori di progetto dei materiali utilizzati.

IL CODICE ENERGY PLUS

Energy Plus è un software basato sui programmi BLAST (Building Loads Analysis and System Thermodynamics) e DOE-2 (Dipartimento Energetico degli Stati Uniti), sviluppati negli Anni 80 per poter eseguire stime e simulazioni sui carichi energetici degli edifici

La **natura open source** del software ha permesso di raggiungere elevate prestazioni e di renderlo uno dei più affidabili strumenti di simulazione presenti nel settore

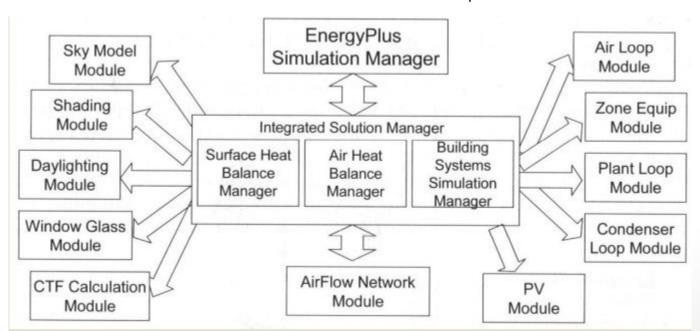
Alcuni dei principali elementi che caratterizzano il software Energy Plus sono:

- Stima dei carichi energetici di una struttura edilizia e permette di condurre un'analisi
 integrata del rendimento energetico dell'edificio in esame e degli impianti che ne fanno
 parte
- <u>Studio del benessere termo-igrometrico</u> degli occupanti dell'edificio, calcolo e verifica igrometrica tramite il modello EMPD (Effective Moisture Penetration Depth Model)
- Collegamento ed interazione con altri software
- Controlli sull'illuminazione interna

IL CODICE ENERGY PLUS

La simulazione in regime dinamico si basa sul metodo delle <u>Funzioni di Trasferimento</u>, ovvero un algoritmo in grado di legare le sollecitazioni (temperature, flussi termici..) indotte su un sistema con le risposte del sistema stesso.

• CTF (Conduction Transfer Function): Calcolo del flusso di calore per conduzione


attraverso le pareti.

• RTF (Room Transfer Function): Calcolo del flusso termico convettivo da fornire

all'aria Ambiente

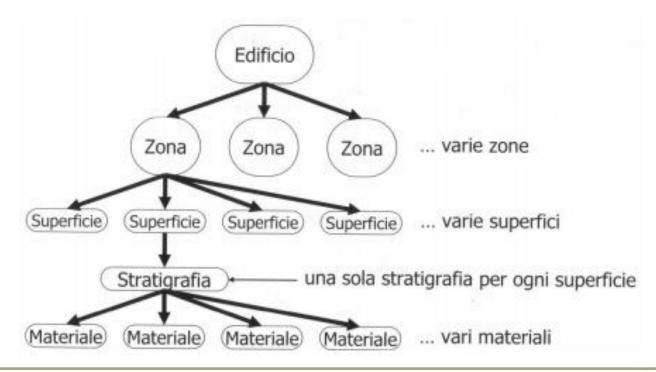
• SATF (Space Air Transfer Function): Calcolo del flusso termico che deve essere

fornito dall'impianto di climatizzazione

IL SOFTWARE DESIGN BUILDER

Alcune caratteristiche di Design Builder:

- È in grado di racchiudere in **un'interfaccia utente completa e semplice** il motore di simulazione energetica dinamica Energy Plus, un modulo di simulazione per l'illuminazione naturale ed un motore di calcolo CFD (Fluido Dinamica Computazionale)
- È possibile importare modelli CAD 3-D da ArchiCAD, Microstation, Revit e qualsiasi altro software BIM che supporta il formato standard gbXML. DesignBuilder è inoltre compatibile con l'importazione di immagini e file cad bidimensionali
- I template di dati permettono di caricare nel proprio progetto le più comuni costruzioni, attività, sistemi HVAC e sistemi di illuminazione di edifici semplicemente selezionandoli dagli elenchi a tendina.

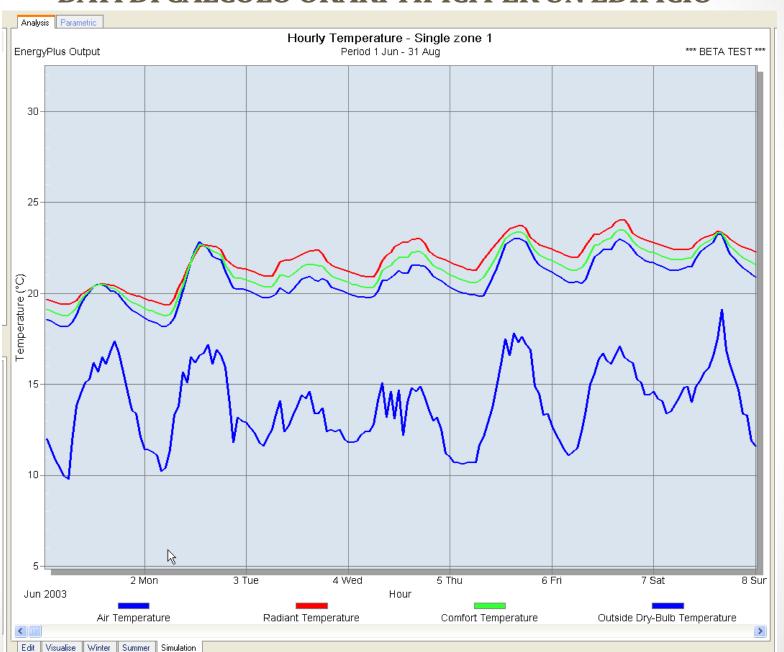


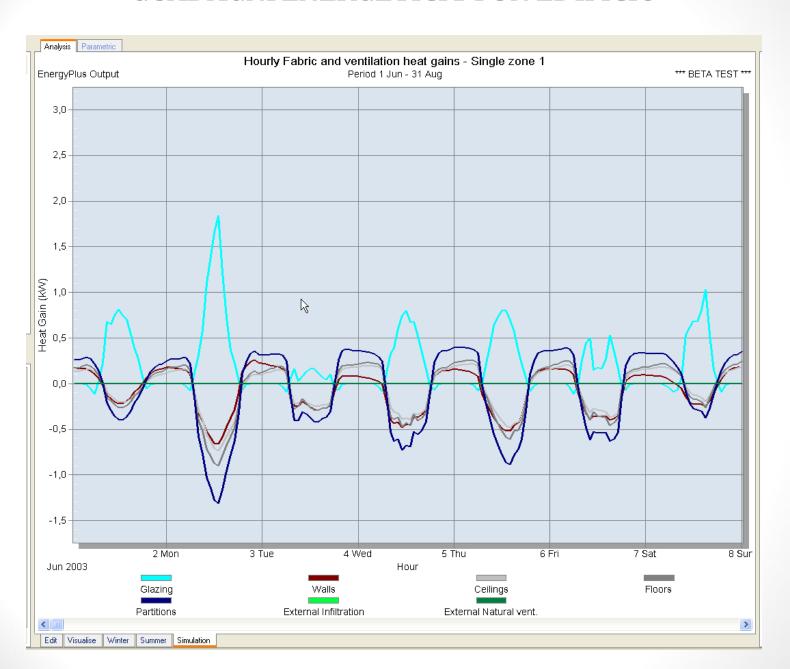
IL SOFTWARE DESIGN BUILDER

La costruzione del modello di calcolo dell'edificio avviene:

- Suddivisione dell'edificio in zone termiche, ciascuna delle quali viene definita dalle superfici che la delimitano.
- Ad ogni superficie viene assegnata una stratigrafia (a sua volta viene costruita assemblando strati di materiale diversi).

Dott. ssa Ing. Elisabetta Negro




DATI DI CALCOLO ORARI TIPICI PER UN EDIFICIO

PERDITE PER VENTILAZIONE TIPICHE PER UN EDIFICIO

GUADAGNI ENERGETICI DI UN EDIFICIO

GRAZIE PER L'ATTENZIONE

Dott. Ing Elisabetta Negro

ing.negroelisabetta@gmail.com

